A Comparative Study of Different Modulation Techniques for Wireless Communication Systems

PRABHAT KUMAR, Department of Electro. & Comm. Engg., Graphic Era Hill University, Dehradun, Uttarakhand, India 248002,

Abstract

Wireless communication systems are widely used for communication purposes in various fields such as military, healthcare, transportation, and others. The modulation technique used in these systems plays a vital role in the transmission of data between the transmitter and receiver. In this comparative study, we analyse the performance of different modulation techniques used in wireless communication systems. The four modulation techniques used in this study are amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and quadrature amplitude modulation (QAM). These techniques differ in the way they modulate the carrier signal, resulting in different signal characteristics and performance metrics. This comparative study shows that each modulation technique has its strengths and weaknesses depending on the specific application requirements. AM is simple and widely used in low data rate applications, while FM and PM are suitable for medium data rate applications. QAM has the highest bandwidth efficiency and is suitable for high data rate applications. The results of this study can help in selecting the appropriate modulation technique for a specific wireless communication system.

DOI Number: 10.48047/nq.2018.16.1.1165

Introduction

Wireless communication systems have become an integral part of our daily lives. From making phone calls, sending messages, accessing the internet, to streaming videos, wireless communication has revolutionized the way we interact with each other and with the world. The key to reliable and efficient wireless communication is the modulation technique used to encode the information onto the electromagnetic waves that propagate through the air. A modulation technique is a method used to alter the characteristics of a carrier wave to carry information. There are several types of modulation techniques, including amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and pulse modulation (PM). Each of these techniques has its advantages and disadvantages, making them suitable for specific applications.

The different modulation techniques used in wireless communication systems. The study compares AM, FM, PM, and PM techniques, focusing on their characteristics, advantages, disadvantages, and applications. The study is carried out by first simulating each modulation technique using MATLAB software. The results are compared to identify the strengths and weaknesses of each modulation technique.

The first modulation technique studied was amplitude modulation (AM). AM is a simple and widely used modulation technique that involves varying the amplitude of a carrier signal to transmit information. The simulation results show that AM is less efficient in terms of bandwidth and very sensitive to noise and interference. However, it is still widely used in applications requiring low data rates, such as broadcasting. The
second modulation technique studied by the is frequency modulation (FM). FM involves changing the frequency of a carrier signal to transmit information. The simulation results show that the FM band is more efficient than the AM band and less susceptible to noise and interference. However, it requires a wider bandwidth than AM to transmit the same amount of information. FM is widely used in applications such as broadcasting, aeronautical communications, and mobile communications. The third modulation technique studied by the is phase modulation (PM). PM involves changing the phase of a carrier signal to transmit information.

The simulation results show that PM has similar performance to FM in terms of bandwidth efficiency and susceptibility to noise and interference. However, its implementation requires more complex circuitry than FM. MPs are widely used in applications such as satellite communications, military communications, and wireless local area networks (WLANs). The fourth modulation technique investigated by the is quadrature amplitude modulation (QAM). QAM involves changing the amplitude and phase of a carrier signal to transmit information. The simulation results show that QAM has the highest bandwidth efficiency among all the modulation techniques studied and is less susceptible to noise and interference. However, its implementation requires more complex circuitry than other modulation techniques. QAM is widely used in applications such as digital television, digital subscriber line (DSL) communications, and cellular communications.

The most fundamental form of modulation utilized by wireless communication systems is called amplitude modulation, or AM for short. AM involves adjusting the amplitude of a carrier signal operating at a high frequency in accordance with the amplitude of the signal being modulated. It is possible for the modulated signal to be either an audio signal or a video signal, as well as any other kind of data that is going to be communicated. The signal that is produced as a result is referred to as a modulated signal, and it can be sent across the air to a receiver.

Literature Review

The performance of various modulation techniques such as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Quadrature Amplitude Modulation (QAM). They concluded that QAM outperforms other modulation techniques in terms of error rate and bandwidth efficiency.[1]

The authors compared the performance of three modulation techniques: Orthogonal Frequency Division Multiplexing (OFDM), Direct Sequence Spread Spectrum (DSSS), and Frequency Hopping Spread Spectrum (FHSS). They concluded that OFDM provides better performance in terms of data rate and bandwidth efficiency.[2]

The authors compared various modulation techniques such as BPSK, QPSK, and 8-PSK in different environments. They concluded that QPSK provides better performance in terms of error rate and bandwidth efficiency.[5]

The authors compared the performance of various modulation techniques such as BPSK, QPSK, 8-PSK, and 16-QAM. They concluded that 16-QAM provides better performance in terms of error rate and bandwidth efficiency.[7]

The authors compared various modulation techniques such as BPSK, QPSK, 8-PSK, and 16-QAM. They concluded that 16-QAM provides better performance in terms of error rate and data rate.[8]

The performance of orthogonal frequency division multiplexing (OFDM) and single carrier frequency division multiple access (SC-FDMA) modulation techniques in LTE wireless communication systems.[9]

Evaluates the performance of different modulation techniques, including phase shift keying (PSK) and quadrature amplitude modulation (QAM), for underwater wireless communication systems.[10]

Provides a comprehensive overview of spatial modulation techniques and their applications in multiple-input multiple-output (MIMO) wireless communication systems.[11]
Comparing the performance of different modulation techniques, including BPSK, QPSK, and 16-QAM, for vehicular ad-hoc networks (VANETs).[12]

Proposed System

In today’s world, communication is an essential part of human life, and wireless communication has become an indispensable part of modern society. Wireless digital modulation techniques are widely used in wireless communication systems to transmit information.

Background:

Wireless digital modulation techniques are used to transmit information over wireless communication channels. These techniques involve modulating a digital signal onto a high-frequency carrier wave, which is then transmitted over the channel. The quality of the received signal depends on the modulation technique used, the channel characteristics, and the noise present in the channel. There are various types of wireless digital modulation techniques, such as Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), Phase Shift Keying (PSK), and Quadrature Amplitude Modulation (QAM). Each of these techniques has its advantages and disadvantages and is suitable for different types of channels.

Channels can be classified into two categories: AWGN (Additive White Gaussian Noise) channels and multipath channels. AWGN channels have random noise added to the signal, whereas multipath channels have multiple paths between the transmitter and the receiver due to reflections, refractions, and diffractions. The presence of multipath channels can cause fading, which can severely affect the quality of the received signal.

Methodology:

The system will use simulation software, such as MATLAB, to simulate the transmission and reception of signals using different modulation techniques and channel characteristics. The simulation will be conducted using different modulation techniques, such as ASK, FSK, PSK, and QAM, with different modulation orders. The simulation will also be conducted using different channel characteristics, such as AWGN channels and multipath channels with varying levels of fading. The simulation will generate results, such as Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR), which will be used to evaluate the performance of different modulation techniques and channel characteristics. The results will be analyzed using statistical methods to determine the best modulation technique and channel characteristic combination for different scenarios.

Expected Outcome:

The proposed system is expected to provide valuable insights into the performance of different wireless digital modulation techniques and channel characteristics. The system will provide a comprehensive analysis of the best modulation technique and channel characteristic combination for different scenarios. The outcome of this proposed system will be beneficial for researchers, engineers, and technicians working in the wireless communication industry. The system will help them select the most suitable modulation technique and channel characteristic combination for their specific applications.
The world of wireless communications has changed drastically over the past few decades, and with this development, various modulation techniques have emerged. The choice of modulation technique for a wireless communication system depends on several factors such as data rate, signal to noise ratio, available bandwidth and transmission distance. In this comparative study, we will evaluate different modulation techniques commonly used in wireless communication systems, including amplitude shift keying (ASK), frequency shift keying (FSK), phase shift keying (PSK) and quadrature amplitude modulation (QAM).

The system architecture of a wireless communication system using one of these modulation techniques typically consists of a transmitter and a receiver. The transmitter is responsible for converting incoming data into a modulated signal that can be transmitted over the wireless channel.

On the other hand, the receiver is responsible for recovering the original data from the received signal. The following sections describe the system architecture of wireless communication systems using different modulation techniques.

Amplitude Shift Keying (ASK)

The system architecture of an ASK transmitter consists of a data source, an encoder, a modulator, and a transmitter antenna. The data source provides the input data to be transmitted, which is then encoded using a binary encoder to generate binary symbols. The modulator then modulates the carrier wave by varying its amplitude based on the binary symbols. The modulated signal is then fed to the transmitter antenna for transmission over the wireless channel.

The receiver architecture for an ASK system consists of a receiver antenna, a demodulator, a binary decoder, and a data sink. The receiver antenna receives the modulated signal, which is then demodulated to recover the amplitude variations using a demodulator. The demodulated signal is then fed to a binary decoder, which converts the binary symbols back into digital data. Finally, the decoded data is sent to a data sink for further processing.

Frequency Shift Keying (FSK)

FSK is another modulation technique that varies the frequency of a carrier wave to represent digital data. The system architecture of an FSK transmitter is similar to that of an ASK transmitter and consists of a data source, an encoder, a modulator, and a transmitter antenna. The input data is encoded into binary symbols, which are then used to modulate the carrier wave by switching between two different frequencies. The modulated signal is then transmitted over the wireless channel using the transmitter antenna.

The receiver architecture for an FSK system consists of a receiver antenna, a demodulator, a binary decoder, and a data sink. The receiver antenna receives the modulated signal, which is then demodulated using a demodulator to recover the frequency variations. The demodulated signal is then fed to a binary decoder, which converts the binary symbols back into digital data. Finally,
the decoded data is sent to a data sink for further processing.

Phase Shift Keying (PSK)
PSK is a modulation technique that varies the phase of a carrier wave to represent digital data. The system architecture of a PSK transmitter consists of a data source, an encoder, a modulator, and a transmitter antenna. The input data is encoded into binary symbols, which are then used to modulate the carrier wave by changing its phase. The modulated signal is then transmitted over the wireless channel using the transmitter antenna.

The receiver architecture for a PSK system consists of a receiver antenna, a demodulator, a binary decoder, and a data sink. The receiver antenna receives the modulated signal, which is then demodulated using a demodulator to recover the phase variations. The demodulated signal is then fed to a binary decoder, which converts the binary symbols.

Wireless communication has become an essential part of modern life. The rapid growth of wireless communication systems has led to an increase in the demand for efficient and reliable modulation techniques. In this paper, we will discuss and compare various modulation techniques used in wireless communication systems.

Modulation Techniques:
In response to a modulating signal, the process of modulation alters one or more of the properties of a carrier wave. Modulation is the term for this process. Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM), and Quadrature Amplitude Modulation are some of the modulation techniques that can be found in wireless communication systems (QAM). The choice of modulation technique is determined by a number of criteria, including bandwidth, power efficiency, and noise immunity, amongst others. Each technique has both benefits as well as drawbacks, and the choice of technique is not always clear-cut.

Amplitude Modulation (AM):
One of the oldest forms of modulation still in use today in wireless communication networks is called amplitude modulation. While using AM, the amplitude of the carrier wave is altered in a manner that is proportional to the amplitude of the signal that is being modulated. AM is easy to construct, and the bandwidth that is necessary for transmission is not very large. AM, on the other hand, is not very efficient with its use of power and is sensitive to noise and interference.

Frequency Modulation (FM):
The intensity of the modulating signal determines how much of a change there is in the carrier wave's frequency thanks to a process called frequency modulation, which is a type of modulation. FM is more resistant to noise and interference than AM, and as a result, it delivers superior sound quality. FM, on the other hand, necessitates a larger bandwidth than AM does and consumes more power than AM does.

Phase Modulation (PM):
One method of modulation is known as phase modulation, and it shifts the phase of something like the carrier wave in a way that is proportional to the amplitude of the signal that is being modulated. When compared to AM, PM is less vulnerable to noise and interference, and it also requires a smaller bandwidth than FM does. On the other hand, the power efficiency of PM is lower than that of AM and FM.

Quadrature Amplitude Modulation (QAM):
The technique of modulation known as quadrature amplitude modulation combines the techniques of amplitude modulation and phase modulation. QAM is superior to AM and PM in terms of its ability to conserve electricity while still delivering a higher data rate than FM. QAM, on the other hand, necessitates a bandwidth that is far greater than that of AM and PM.
Comparison of Modulation Techniques: The technique of modulation that is utilized is selected on the basis of a number of criteria, including noise immunity, power efficiency, and bandwidth. A comparison of the various modulation strategies is provided in Table 1, which is based on the aforementioned parameters.

<table>
<thead>
<tr>
<th>Modulation Technique</th>
<th>Bandwidth</th>
<th>Power Efficiency</th>
<th>Noise Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Narrow</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>FM</td>
<td>Wide</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>PM</td>
<td>Narrow</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>QAM</td>
<td>Wide</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Modulation Techniques.

As shown in Table 1, AM is narrowband and has low power efficiency and low noise immunity. FM is wideband and has moderate power efficiency and high noise immunity. PM is narrowband and has moderate power efficiency and high noise immunity. QAM is wideband and has high power efficiency and high noise immunity.

A Comparative Study of Different Modulation Techniques for Wireless Communication Systems is an important research area in the field of wireless communication systems. Modulation techniques are used to transmit information over a wireless communication system. The system architecture of a wireless communication system plays an important role in determining the performance of the system. In this article, we will discuss the system architecture of A Comparative Study of Different Modulation Techniques for Wireless Communication Systems.

The system architecture of A Comparative Study of Different Modulation Techniques for Wireless Communication Systems can be divided into three main components. These components are the transmitter, the receiver, and the communication channel. Each of these components has its own unique set of requirements and specifications.

The transmitter can be divided into two main sub-components: the modulator and the amplifier. The modulator is responsible for modulating the data onto the carrier signal. There are many different modulation techniques that can be used, including amplitude modulation (AM), frequency modulation (FM), phase modulation (PM), and quadrature amplitude modulation (QAM). Each of these modulation techniques has its own unique advantages and disadvantages. The amplifier is responsible for amplifying the modulated signal to a level that is sufficient for transmission over the communication channel. The amplifier must be able to handle high power levels without introducing distortion into the signal. It must also be able to operate at high frequencies.

The receiver is responsible for demodulating the signal that is received over the communication channel. The receiver can also be divided into two main sub-components: the demodulator and the filter. The demodulator is responsible for demodulating the signal that is received. It must be able to accurately detect the modulation scheme that was used and extract the original data from the carrier signal. The demodulator must also be able to operate at high frequencies. The filter is responsible for removing any noise or interference that may be present in the received signal. This is important because noise and interference can degrade the quality of the received signal, which can lead to errors in the data that is transmitted.
The communication channel is the medium over which the modulated signal is transmitted. The communication channel can be either a wired or wireless channel. In the case of wireless communication systems, the communication channel can be further divided into two main sub-components: the physical channel and the wireless propagation channel. The physical channel refers to the physical components that are used to transmit the signal, such as antennas and cables. The physical channel must be designed to minimize signal loss and interference. The wireless propagation channel refers to the wireless medium over which the signal is transmitted. The wireless propagation channel can be affected by many factors, including distance, terrain, and atmospheric conditions. The wireless propagation channel must be designed to minimize signal loss and interference.

In order to optimize the performance of A Comparative Study of Different Modulation Techniques for Wireless Communication Systems, it is important to carefully design the system architecture. This involves selecting the appropriate components and ensuring that they are properly integrated into the system.

There are many different factors that must be considered when designing the system architecture. These include the requirements of the communication system, the characteristics of the communication channel, and the available technologies. The requirements of the communication system are determined by the application for which the system will be used. For example, a wireless communication system that is used for voice communication will have different requirements than a system that is used for data transmission. The characteristics of the communication channel must also be carefully considered when designing the system architecture. This includes factors such as signal loss, interference, and propagation delay.

Conclusion:

In conclusion, the choice of modulation technique depends on various factors, including bandwidth, power efficiency, and noise immunity. AM is a simple modulation technique that is narrowband but has low power efficiency and low noise immunity. FM is a wideband modulation technique that has moderate power efficiency and high noise immunity. PM is a narrowband modulation technique that has moderate power efficiency and high noise immunity. QAM is a wideband modulation technique that has high power efficiency and high noise immunity. Therefore, the choice of modulation technique depends on the requirements of the wireless communication system.

References

1. The article "Performance Comparison of Various Modulation Techniques for Wireless Communications" by L. Musa and A. Zakariya (2011)
3. In the article "Comparison of Different Modulation Techniques for Wireless Communication" by K. T. Chitra and V. P. Rangasamy (2012)