DOI: 10.14704/nq.2018.16.7.1693

Data Analysis of Deviation in Information Networks

Daegene Song

Abstract


In recent years, examining the information processing aspects of nature has received significant attention. In particular, entanglement has been shown to exhibit what is arguably the most distinctive and unique aspect of quantum information science. In this note, a numerical method is applied to the Bell inequalities for examining the range of nonlocality when imperfect measurements are performed at each end. A two-qubit direct protocol is also examined such that, unlike the Bell-type inequalities, the approach is not as stable as the indirect one against measurement errors in yielding the nonlocality. On the other hand, since many applications of quantum technology involve a particular type of entanglement, it is important to have a technique to manipulate correlations. In this paper, five chained 2-level entanglements are also examined with swapping protocols applied at each joint. It is numerically shown that there exists a class of states that approximate the optimal result, i.e., the weakest link.

Keywords


Data, Numerical Methods, Entanglement, Nonlocality

Full Text:

PDF

References


Aspect A, Dalibard J, Roger G. Experimental test of Bell's inequalities using time-varying analyzers. Physical review letters 1982; 49(25): 1804-07.

Bell JS. On the Einstein-Podolsky-Rosen Paradox. Physics 1964; 1: 195–200. Reprinted in John Stuart Bell, Speakable and Unspeakable in Quantum Mechanics.

Bennett CH, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 2014; 560(P1): 7-11.

Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 1993; 70(13):1895-99.

Bose S, Vedral V, Knight PL. Multiparticle generalization of entanglement swapping. Physical Review A 1998; 57(2): 822.-29.

Clauser JF, Horne MA, Shimony A, Holt RA. Proposed experiment to test local hidden-variable theories. Physical Review Letters 1969; 23(15): 880-84.

Cleve R, Buhrman H. Substituting quantum entanglement for communication. Physical Review A 1997;56(2):1201-04.

Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1985; 400(1818): 97-117.

Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?. Physical Review 1935; 47(10): 777-80.

Ekert AK. Quantum cryptography based on Bell’s theorem. Physical review Letters.1991; 67(6):661-63.

Feynman R. Feynman Lectures on Physics. Addison Wesley Longman, 1970.

Hardy L. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Physical Review Letters 1992; 68(20):2981-85.

Hardy L. Method of areas for manipulating the entanglement properties of one copy of a two-particle pure entangled state. Physical Review A 1999; 60(3): 1912-23.

Hardy L, Song DD. Entanglement-swapping chains for general pure states. Physical Review A 2000; 62(5): 052315.

Jonathan D, Plenio MB. Minimal conditions for local pure-state entanglement manipulation. Physical Review Letters 1999; Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ. Linear optical quantum computing with photonic qubits. Reviews of Modern Physics 2007; 79(1): 135-74.

Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien JL. Quantum computers. Nature 2010; 464(7285): 45-53.

Landauer R. Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 1961; 5(3):183-191.

Lloyd S. Computational capacity of the universe. Physical Review Letters 2002; 88(23): 237901.

Lloyd S. Programming the universe. Alfred A. New York: Knopf, 2006.

Nielsen MA, Chuang I. Quantum computation and quantum information, Cambridge: Cambridge University Press, 2000.

Peres A. Quantum Theory: Concepts and Methods. Dordrecht : Kluwer, 1997.

Schmidhuber J. Computer universes and an algorithmic theory of everything. arXiv:1501.01373. 2015.

Shi BS, Jiang YK, Guo GC. Optimal entanglement purification via entanglement swapping. Physical Review A 2000; 62(5): 054301.

Shor P. Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA), 1996: 124.

Hooft GT. Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity 1999; 16(10): 3263-79.

Tittel W, Brendel J, Zbinden H, Gisin N. Violation of Bell inequalities by photons more than 10 km apart. Physical Review Letters 1998; 81(17):3563-66.

Vedral V. Decoding reality: the universe as quantum information. Oxford: Oxford University Press, 2010.

Wheeler JA. Information, physics, quantum: the search for links. In Zurek ed., Complexity, entropy, and the physics of information. Redwood City, California: Addison-Wesley, 1990.

Wolfram S. A new kind of science. Champaign: Wolfram media, 2002.

Yin J, Ren JG, Lu H, Cao Y, Yong HL, Wu YP, Liu C, Liao SK, Zhou F, Jiang Y, Cai XD. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 2012; 488(7410): 185-88.

Yin J, Cao Y, Li YH, Liao SK, Zhang L, Ren JG, Cai WQ, Liu WY, Li B, Dai H, Li GB. Satellite-based entanglement distribution over 1200 kilometers. Science 2017; 356(6343): 1140-44.

Zizzi PA. Spacetime at the Planck scale: The quantum computer view. The Foundations of Quantum Mechanics, Historical Analysis and Open Questions-Cesena 2004: Cesena, Italy 2006: 345-58.

Zukowski M, Zeilinger A, Horne MA, Ekert AK. ``Event-ready-detectors'' Bell experiment via entanglement swapping. Physical Review Letters 1993; 71: 4287-90.


Supporting Agencies





| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2017