DOI: 10.14704/nq.2013.11.3.687

A Testable Application of Nonlinear Whole Neurobiology: Possible Transformation among Vision and Other Sensations

Yi-Fang Chang


Different sensation systems are usually independent each other. Our collective open out the potential of blind children, and found through a period training of time, some children by touch or nose or ear can distinguish different colors, even simple figure and numbers. From this and other research, we propose a hypothesis: The neural excitable cell is continuously induced and excited, then grow out new synapse and dendrite, and the feeling system, hearing system, smell system, etc., may joint to visual system, and form a new neural network, and achieve finally a transformation among vision and other sensations. Further, we propose some possible tests, for example, for trained mammal, etc., and research possible theories. It is a testable application of the nonlinear whole neurobiology. This may build a bridge between modern science and traditional culture, religion.

NeuroQuantology | September 2013 | Volume 11 | Issue 3 | Page 399-404


neurobiology; vision; nonlinearity; sensation, transformation

Full Text:

Full Text PDF


Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys 2002; 74: 47-97.

Bliss TVP, Collingridge GL. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993; 361:31-39.

Boccaletti S, Latora V, Moreno Y, et al., Complex networks: structure and dynamics. Phys Rep 2006; 424: 175-308.

Brown TH, Ganong AH, Kairiss EW, Keenan. Hebbian synapses: Biophysical mechanisms and algorithms. Annu Rev Neurosci 1990; 13:475-512.

Chang Yi-Fang. Nonlinear whole biology and its basic laws. Chinese Science Abstracts 2001; 7: 227-228.

Chang Yi-Fang. Nonlinear whole biology and loop quantum theory applied to biology. NeuroQuantology 2012a; 10(2):190-197.

Chang Yi-Fang. Extensive quantum biology, applications of nonlinear biology and nonlinear mechanism of memory. NeuroQuantology 2012b; 10(2):183-189.

Chino YM, Kaas JH, Smith EL, et al., Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Ses 1992; 32:789-896.

Crick F. The Astonishing Hypothesis: the Scientific Search for the Soul. Charles Scribner’s Sons, 1994.

De Yoe EA, van Essen DC. Parallel processing streams in monkey visual cortex. Trends Neuroscience 1987; 11:219-226.

Dronkers NF. A new brain region for coordinating speech articulation. Nature 1996; 384: 159-161.

Erol M. Quantum entanglement: Fundamentals and relations with consciousness/mind. NeuroQuantology 2010;8(1): 101-109.

Farah MJ. Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision. Brandford Books, MIT Press, 1990.

Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1991; 1: 1-47.

Feynman RP, Leighton RB and Sands M. The Feynman Lectures on Physics. Addison-Wesley Publishing Company, 1964.

Finney EM, Fine I, Dobkins KR. Visual stimull activate auditory cortex in the deaf. Nature Neuroscience 2001; 4:1171-1173.

Fregnac Y, Shulz D, Thorpe S, Bienenstock E. A cellular analogue of visual cortical plasticity. Nature 1988; 333:367-370.

Haken H. Synergetics. An Introduction (3rd ed). Berlin: Springer, 1983.

Haken H. Advanced Synergetics. Berlin: Springer, 1985.

Haken H. Synergetic Computers and Cognition. Berlin: Springer, 1990.

Haken H. Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition. Berlin: Springer, 1996.

Haken H. Brain Dynamics. Berlin: Springer, 2002.

Hammond C. Cellular and Molecular Neurophysiology. Elsevier, 2008.

Hopfield JJ. Neural networks and physical system with emergent collective computational abilities. Proc Natl Acad Sci USA 1982;79: 2554-2558.

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962; 160: 106-154.

Hubel DH, Wiesel TN. Receptive fields of cells in striate cortex of very young, visually inexperienceed kittens. J Neurophysiol 1963; 26: 994-1002.

Hubel DH, Wiesel TN. Receptive fields and functional architecture in two nonstriate visual area (18 and 19) of the cat. J Neurophysiol 1965; 28: 229-289.

Jain RC, Binford TO. Ignorance, myopia and naivete in computer vision system. CVGIP IU 1991; 53(1): 112-117.

Livingstone MS, Hubel DH. Segregation of form, color, movement and depth: anatomy, physiology, and perception. Science 1988; 240:740-749.

Marr D. Vision. W. H. Freeman, 1983.

Nieuwenhuys R, Voogd J, von Huijzen C. The Human Central Nervous System: A Synopsis and Atlas. Berlin: Springer-Verlag, 1979.

Pessoa L, Tootell RBH, Ungerleider LG. Visual perception of objects. In Squire L. ea al. Eds. Fundamental Neuroscience. Academi Press, 1067-1090.

Rumelhart DE, McClelland L. Parallel distributed processing-explanation in the microstructure of cognition. Vol.1: Foundation, Vol.2: Psychological and Biological Models. Cambridge, Mas. MIT Press, 1986.

Shou Tiande Ed. Neurobiology (2 Ed). Higher Education Press, 2006.

Shou Tiande. Brain Mechanisms of Visual Information Precessing (2 Ed). Chinese Science and Technology University Press, 2010.

Squire L, Berg D, Bloom F, du Lac S, Ghosh A, Spitzer N. Eds. Fundamental Neuroscience. Academi Press, 2008.

Strogatz SH. Exploring complex networks. Nature 2001; 410: 268-270.

Tarlaci S. Quantum field theory and consciousness. NeuroQuantology 2005; 3: 228-245.

Thoenen H. Neurotrophins and neuronal plasticity. Science 1995; 270: 593-598.

Toga AW et al.,, Mapping brain maturation. Trends in Neuroscience 2006; 29(3): 148-159.

Tuchwell HC. Introduction to Theoretical Neurobiology. New York: Cambridge University Press, 1988.

Winberger NM. Physiological memory in primary auditory cortex: characteristic and mechanisms. Neurobiol Learn Mem 1998, 70(1/2):226-251.

Yinon U, Mammor A. Optic chiasm split and binocularity diminution in cortical cells of acute and of chronic operated adult cats. Exp Brain Res 1985; 58:552-558.

Zohary E, Celebrini S, Britten KH, Newsome WT. Neuronal plasticity that underlies improvement in preceptual performance. Science 1994; 263: 1289-1292.

Supporting Agencies

Relevant conflicts of interest/financial disclosures: Nothing to report.

| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2019