DOI: 10.14704/nq.2019.17.6.2227

Novel Pathogenic, Biomarker and Therapeutic Potentials of Foxm1 in Glioma

Seidu A Richard


Gliomas embody entirely prime brain tumors of glial cell or neuroepithelial derivation. Glioma is still one of the lethal human cancers notwithstanding contemporary innovations in both diagnostic techniques and therapeutic schemes. Also, glioma carries the lowest survival rate as compare to other cancers 5 years after definitive diagnosis. FoxM1 was initially identified as HFH-11, WIN, MPP2, as well as Trident. It’s an evolutionary well-maintained, with common winged helix DNA-binding domain. FoxM1 actively participates in gliomagenesis via several pathways like, FoxM1/MELK/EZH2 signaling, FoxM1/BMI-1/Ink4a/Arf/Ink4b signaling, FoxM1/IPO7/Hh signaling as well as FoxM1/PLAGL2/Wnt/β-catenin signaling. FoxM1 also augments’ the stimulation of Akt as well as secretion of survivin, cyclin E, and cyclin D1. Furthermore, FoxG1 contributes to glioma invasiveness via MMPs especially MMP-4 and MMP-9. Nevertheless, FoxM1 contributes to glioma angiogenesis via VEGF and transcription stimulators like HIF-1 and STAT3 have been implicated as VEGF facilitators. FoxM1 has also proven to a promising diagnostic and prognostic biomarker in glioma. Moreover, FoxM1 has therapeutic potential in glioma either alone or in combination with other agents. This review therefore focuses on the novel pathogenic, biomarker and therapeutic potentials of FoxM1 in Glioma.


Glioma, pathogenic, biomarker, therapeutic, prognosis, diagnosis

Full Text:



Abe T, Mori T, Kohno K, Sciki M, Hayakawa T, Welgus HG, Hori S, Kuwano M. Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells. Clinical & experimental metastasis 1994; 12(4): 296-304.

Alldridge LC and Bryant CE. Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal. Experimental cell research 2003; 290(1): 93-107.

Alvarez-Fernández M and Medema RH. Novel functions of FoxM1: from molecular mechanisms to cancer therapy. Frontiers in oncology 2013; 3:30.

Alvarez‐Fernández M, Halim VA, Krenning L, Aprelia M, Mohammed S, Heck AJ, Medema RH. Recovery from a DNA‐damage‐induced G2 arrest requires Cdk‐dependent activation of FoxM1. EMBO reports 2010; 11(6): 452-458.

Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nature medicine 2013; 19(11): 1410.

Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, Zhai H, Vidal M, Gygi SP, Braun P, Sicinski P. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer cell 2011; 20(5): 620-634.

Carpenter RL and Lo HW. Hedgehog pathway and GLI1 isoforms in human cancer. Discovery medicine 2012; 13(69): 105.

Chen Y, Li Y, Xue J, Gong A, Yu G, Zhou A, Lin K, Zhang S, Zhang N, Gottardi CJ, Huang S. Wnt‐induced deubiquitination FoxM1 ensures nucleus β‐catenin transactivation. The EMBO journal 2016; 35(6): 668-684.

Cheng SX, Tu Y, Zhang S. FoxM1 promotes glioma cells progression by up-regulating Anxa1 expression. PloS one. 2013; 8(8): e72376.

Claffey KP, Shih SC, Mullen A, Dziennis S, Cusick JL, Abrams KR, Lee SW, Detmar M. Identification of a human VPF/VEGF 3′ untranslated region mediating hypoxia-induced mRNA stability. Molecular Biology of the Cell 1998; 9(2): 469-481.

Clevers H and Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-1205.

Dai B, Gong A, Jing Z, Aldape KD, Kang SH, Sawaya R, Huang S. Forkhead box M1 is regulated by heat shock factor 1 and promotes glioma cells survival under heat shock stress. Journal of Biological Chemistry 2013; 288(3): 1634-1642.

Dai B, Kang SH, Gong W, Liu M, Aldape KD, Sawaya R, Huang S. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 2007; 26(42): 6212.

Dai B, Pieper RO, Li D, Wei P, Liu M, Woo SY, Aldape KD, Sawaya R, Xie K, Huang S. FoxM1B regulates NEDD4-1 expression, leading to cellular transformation and full malignant phenotype in immortalized human astrocytes. Cancer research 2010; 70(7): 2951-2961.

Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature medicine 1995; 1(1): 27.

Fu Z, Malureanu L, Huang J, Wang W, Li H, Van Deursen JM, Tindall DJ, Chen J. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nature cell biology 2008; 10(9): 1076.

Gai X, Lu Z, Tu K, Liang Z, Zheng X. Caveolin-1 is up-regulated by GLI1 and contributes to GLI1-driven EMT in hepatocellular carcinoma. PloS one 2014; 9(1): e84551.

Gong A, Huang S. FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer research. 2012; 72(22): 5658-5662.

Gu C, Banasavadi‐Siddegowda YK, Joshi K, Nakamura Y, Kurt H, Gupta S, Nakano I. Tumor‐specific activation of the C‐JUN/MELK pathway regulates glioma stem cell growth in a p53‐dependent manner. Stem cells 2013; 31(5): 870-881.

Halasi M and Gartel AL. Suppression of FOXM1 sensitizes human cancer cells to cell death induced by DNA-damage. PloS one 2012; 7(2): e31761.

Huang H and He X. Wnt/β-catenin signaling: new (and old) players and new insights. Current opinion in cell biology 2008; 20(2): 119-125.

Infante P, Mori M, Alfonsi R, Ghirga F, Aiello F, Toscano S, Ingallina C, Siler M, Cucchi D, Po A, Miele E. Gli1/DNA interaction is a druggable target for Hedgehog‐dependent tumors. The EMBO journal 2015; 34(2): 200-217.

Joshi K, Banasavadi‐Siddegowda Y, Mo X, Kim SH, Mao P, Kig C, Nardini D, Sobol RW, Chow LM, Kornblum HI, Waclaw R. MELK‐dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem cells 2013; 31(6): 1051-1063.

Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell cycle 2011; 10(3): 396-405.

Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM, Dennewitz MB, Shin B, Datta A, Raychaudhuri P, Costa RH. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes & development 2004; 18(7): 830-850.

Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV, Major ML, Gusarova GA, Yoder HM, Costa RH, Kalinichenko VV. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer research 2006; 66(4): 2153-2161.

Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu C, Nakano-Okuno M, Taylor D, Minata M, Sulman EP, Lee J. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem cell reports 2015; 4(2): 226-238.

Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK. The WHO classification of tumors of the nervous system. Journal of Neuropathology & Experimental Neurology 2002; 61(3): 215-225.

Koo CY, Muir KW, Lam EW. FOXM1: From cancer initiation to progression and treatment. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2012;1819(1): 28-37.

Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B. Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. The American journal of pathology 1998;153(2): 429-437.

Laoukili J, Alvarez-Fernandez M, Stahl M, Medema RH. FoxM1 is degraded at mitotic exit in a Cdh1-dependent manner. Cell cycle 2008;7(17): 2720-2806.

Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature cell biology 2005; 7(2): 126.

Levy AP, Levy NS, Wegner S, Goldberg MA. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. Journal of Biological Chemistry. 1995; 270(22): 13333-13340.

Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP, Yao KM. FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. Journal of Biological Chemistry 2008; 283(24): 16545-16553.

Li Y, Zhang S, Huang S. FoxM1: a potential drug target for glioma. Future oncology 2012; 8(3): 223-236.

Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Aldape KD, Xie TX, Pelloski CE, Xie K, Sawaya R. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer research 2006; 66(7): 3593-3602.

Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer. Circulation research 1995; 77(3): 638-643.

MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental cell 2009;17(1): 9-26.

Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S. Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-oncology 2013; 16(5): 671-85.

Martin GR, Perretti M, Flower RJ, Wallace JL. Annexin-1 modulates repair of gastric mucosal injury. American Journal of Physiology-Gastrointestinal and Liver Physiology 2008; 294(3): G764-G769.

Minata M, Gu C, Joshi K, Nakano-Okuno M, Hong C, Nguyen CH, Kornblum HI, Molla A, Nakano I. Multi-kinase inhibitor C1 triggers mitotic catastrophe of glioma stem cells mainly through MELK kinase inhibition. PloS one 2014; 9(4): e92546.

Mirza MK, Sun Y, Zhao YD, Potula HH, Frey RS, Vogel SM, Malik AB, Zhao YY. FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of β-catenin expression. Journal of Experimental Medicine 2010; 207(8): 1675-1685.

Monteiro LJ, Khongkow P, Kongsema M, Morris JR, Man C, Weekes D, Koo CY, Gomes AR, Pinto PH, Varghese V, Kenny LM. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment. Oncogene 2013; 32(39): 4634.

Myatt SS and Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews Cancer 2007; 7(11): 847.

Nakano I, Joshi K, Visnyei K, Hu B, Watanabe M, Lam D, Wexler E, Saigusa K, Nakamura Y, Laks DR, Mischel PS. Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro-oncology 2011; 13(6): 622-634.

Ng JM and Curran T. The Hedgehog's tale: developing strategies for targeting cancer. Nature Reviews Cancer 2011; 11(7): 493.

Park HJ, Wang Z, Costa RH, Tyner A, Lau LF, Raychaudhuri P. An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle. Oncogene 2008; 27(12): 1696.

Priller M, Pöschl J, Abrao L, von Bueren AO, Cho YJ, Rutkowski S, Kretzschmar HA, Schüller U. Expression of FoxM1 is required for the proliferation of medulloblastoma cells and indicates worse survival of patients. Clinical cancer research 2011; 17(21): 6791-6801.

Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, Gartel AL. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer research 2006; 66(19): 9731-9735.

Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z, Xu H. Post-translational modifications of high mobility group box 1 and cancer. American journal of translational research 2017a; 9(12): 5181.

Richard SA, Min W, Su Z, Xu H. High mobility group box 1 and traumatic brain injury. Journal of Behavioral and Brain Science 2017b; 7(02): 50.

Richard SA, Min W, Su Z, Xu HX. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases.AIMS Molecular Science 2017c; 4: 185-218.

Richard SA, Shrestha SS, Zhang C, Fu W, Wang T, Cong W, Xie X. Successful treatment of a child with ruptured arteriovenous malformation using onyx embolization: A case report. Open Journal of Modern Neurosurgery 2017d; 7(04): 153.

Richard SA, Xiang LH, Yun JX, Shanshan Z, Jiang YY, Wang J, Su ZL, Xu HX. Carcinogenic and therapeutic role of high-mobility group box 1 in cancer: is it a cancer facilitator, a cancer inhibitor or both. World Cancer Research Journal 2017; 4(3): e919.

Richard SA, Ye Y, Li H, Ma L, You C. Glioblastoma multiforme subterfuge as acute cerebral hemorrhage: A case report and literature review. Neurology international 2018; 10(1).

Richard SA, Zheng S, Su Z, Gao J, Xu H. The pivotal neuroinflammatory, therapeutic and neuroprotective role of alpha-mangostin. Journal of Neurology Research 2017e; 7(4-5): 67-79.

Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer. Nature reviews Drug discovery 2006; 5(12): 1026.

Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clinical & experimental metastasis 1996; 14(1): 35-42.

Seidu RA, Wu M, Su Z, Xu H. Paradoxical role of high mobility group box 1 in glioma: a suppressor or a promoter?. Oncology reviews 2017; 11(1).

Shen D, Nooraie F, Elshimali Y, Lonsberry V, He J, Bose S, Chia D, Seligson D, Chang HR, Goodglick L. Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis. Human pathology 2006; 37(12): 1583-1591.

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: a cancer journal for clinicians 2013; 63(1): 11-30.

Stein I, Neeman M, Shweiki D, Itin A, Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Molecular and cellular biology 1995; 15(10): 5363-5368.

Su Z, Ni P, She P, Liu Y, Richard SA, Xu W, Zhu H, Wang J. Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunology, Immunotherapy 2017; 66(3): 391-401.

Surawicz TS, Davis F, Freels S, Laws ER, Menck HR. Brain tumor survival: results from the National Cancer Data Base. Journal of neuro-oncology 1998; 40(2): 151-160.

Varjosalo M and Taipale J. Hedgehog: functions and mechanisms. Genes & development 2008; 22(18): 2454-2472.

Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Molecular and cellular biology 2005; 25(24): 10875-10894.

Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer treatment reviews 2010; 36(2): 151-156.

Wang Z, Zhang S, Siu TL, Huang S. Glioblastoma multiforme formation and EMT: role of FoxM1 transcription factor. Current pharmaceutical design 2015; 21(10): 1268-1271.

Westphal M and Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nature Reviews Neuroscience 2011; 12(9): 495.

Wild-Bode C, Weller M, Wick W. Molecular determinants of glioma cell migration and invasion. Journal of neurosurgery 2001; 94(6): 978-984.

Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004; 23(20): 3550.

Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, Huang S. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β–dependent cancer metastasis. The Journal of clinical investigation 2014; 124(2): 564-579.

Xue J, Zhou A, Tan C, Wu Y, Lee HT, Li W, Xie K, Huang S. Forkhead box M1 is essential for nuclear localization of glioma-associated oncogene homolog 1 in glioblastoma multiforme cells by promoting importin-7 expression. Journal of Biological Chemistry 2015; 290(30): 18662-18670.

Yao KM, Sha M, Lu Z, Wong GG. Molecular Analysis of a Novel Winged Helix Protein, Win Expression Pattern, DNA binding property, and alternative splicing within the DNA binding domain. Journal of Biological Chemistry 1997; 272(32): 19827-19836.

Ye H, Kelly TF, Samadani U, Lim L, Rubio S, Overdier DG, Roebuck KA, Costa RH. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Molecular and cellular biology 1997; 17(3): 1626-1641.

Yi M and Schnitzer JE. Impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1-null mice. Proceedings of the National Academy of Sciences 2009; 106(42): 17886-17891.

Yoon JW, Kita Y, Frank DJ, Majewski RR, Konicek BA, Nobrega MA, Jacob H, Walterhouse D, Iannaccone P. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. Journal of Biological Chemistry 2002; 277(7): 5548-5555.

Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y, Sawaya R. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer cell 2011; 20(4): 427-442.

Zhang N, Wu X, Yang L, Xiao F, Zhang H, Zhou A, Huang Z, Huang S. FoxM1 inhibition sensitizes resistant glioblastoma cells to temozolomide by downregulating the expression of DNA-repair gene Rad51. Clinical cancer research 2012; 18(21): 5961-5971.

Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, Huang S. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer research 2008; 68(21): 8733-8742.

Zheng H, Ying H, Wiedemeyer R, Yan H, Quayle SN, Ivanova EV, Paik JH, Zhang H, Xiao Y, Perry SR, Hu J. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer cell 2010; 17(5): 497-509.

Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 2008; 455(7216): 1129.

Supporting Agencies


| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2019