DOI: 10.14704/nq.2017.15.1.1014

A Bio-Electrical Tornado in The Hippocampus: Mechanisms of Temporal Lobe Epilepsy

Umit H Sayin


This review summarizes the structural and electrophysiological changes in the epileptic hippocampus in various animal models of epilepsy. Tornado hypothesis of epileptic hippocampus, states that there are many progressive detrimental changes in the hippocampus of the epileptic rats. PTZ, PTZ kindling, pilocarpine, electrical kindling, kainic acid, hyperthermia and in vitro models are taken as primary animal epilepsy models in this review. Paired pulse inhibition and GABAergic transmission is decreased in dentate gyrus (DG), CA3 and CA1 regions of the epileptic hippocampus. There is interneuron loss in the hilus, DG and CA3, while excitatory input from perforant path (PP) is increased and this is fed into the CA3 area by mossy fibers (MF) which have excessive sprouting that forms novel recurrent synapses with the pyramidal cells of CA3. Gate function of DG is either impaired or lost. CA3 area of hippocampus becomes an epileptic focus and sends ictal discharges. These ictal discharges are carried into CA1 by Schaffer collaterals and then into entorhinal cortex (EC). The input from EC is amplified in the hippocampal circuitry which is fed into hippocampus from EC into DG again successively. Thus a weak electrical input into the hippocampal formation results in an amplified signal back into EC. Since the basic ultrastructural and electrophysiological feed-back control mechanisms are impaired, this electrical tornado cannot be compensated for and an epileptic amplified ictal discharge spreads to the limbic system and other adjacent structures of the brain. Eventually the hippocampal circuitry, that has developed a vicious circle, becomes a bio-electrical amplifier which triggers an electrical tornado, under certain bio-chemical conditions.


Animal models of epilepsy; tornado hypothesis of epilepsy; CA3; CA1; Dentate gyrus; PPI; kindling; kainic acid; PTZ; epileptic hippocampus; pilocarpine; febrile convulsion; GABAergic inhibition; interneuron; mossy fiber sprouting; in vitro

Full Text:

Full Text PDF


Baram TZ, Gerth A, Schultz, L. Febrile seizures: An appropriate-aged model suitable for long-term studies. Dev Brain Res 1997; 98: 265–270.

Ben-Ari Y, Tremblay E, Riche, D, Ghilini G, Naquet R. Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: Metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 1981; 6: 1361–1391.

Bertalanffy von L. General System Theory. New York: George Braziller, 1969.

Bertram EH. Extrahippocampal lobe circuits in the temporal lobe epilepsy. Epilepsy & Behav 2014; 38: 13-18.

Bonilha L, Keller SS. Quantitative refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Surg 2015; 5 (2): 2014-224.

Boyce R, Leung LS. Loss of dendritic inhibition in the hippocampus after repeated early-life hyperthermic seizures in rats. Epilepsy Res 2013; 103(1): 62-72. doi: 10.1016/j.

Cavalheiro EA, Silva DF, Turski, WA, Calderazzo-Filho LS, Bortolotto ZA, Turski, L. The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Brain Res. 1987; 465: 43–58.

Clifford DB, Olney JW, Maniotis, A, Collins RC, Zorumski CF. The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience 1987; 23: 953–968.

Dubé C, Chen K, Eghbal-Ahmadi M, Brunson, K, Soltesz I, Baram TZ Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 2000; 47 336–344.

Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. Temporal lobe epilepsy after experimental prolonged febrile seizures: Prospective analysis. Brain 2006; 129: 911–922.

Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A et al. Epileptogenesis provoked by prolonged experimental febrile seizures: Mechanisms and biomarkers. J Neurosci 2010; 30: 7484–7494.

Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 2007; 163:755-73.

Epsztein J, Milh M, Bihi RI, Jorquera I, Ben-Ari Y, Represa A, Crépel V. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons. J Neurosci 2006; 26(26):7082-92.

Fathollahi Y, Motamedi F, Semnanian S, Zardoshti M. Examination of persistent effects of repeated administration of pentylenetetrazol on rat hippocampal CA1: evidence from in vitro study on hippocampal slices. Brain Res 1997; 758(1-2): 92-8.

Flynn SP, Barriere S, Scott RC, Lenck-Santini PP, Holmes GL. Status Epilepticus Induced Spontaneous Dentate Gyrus Spikes: In Vivo Current Source Density Analysis. PLoS One 2015; 6; 10 (7): e0132630. doi: 10.1371/journal.pone.0132630.

Gilbert ME. Potentiation of inhibition with perforant path kindling: an NMDA-receptor dependent process. Brain Res 1991; 564(1):109-16.

Hadar E, Yang Y, Sayin Ü, Rutecki PA. Suppression of Pilocarpine-induced Ictal Oscilations in the Hippocampal Slice, Epilepsy Res 2002; 49: 61-71.

Hadar E, Yang Y, Sayin Ü, Rutecki PA. Suppression of Pilocarpine-induced Ictal Oscilations in the Hippocampal Slice, Epilepsy Res 2002; 49: 61-71.

Hartley T, Lever C, Burgess N, O’Keefe J. Space in the brain: how the hippocampal formation supports spatial cognition. Phil Trans Soc B 2014; 369: 20120510.

Hofmann G, Balgooyen L, Mattis J, Deisseroth K, Buckmaster PS. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy. Epilepsia 2016; 57 (6): 977-83. doi: 10.1111/epi.13376.

Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 1999; 404(4): 537-53.

Holmes GL, Gairsa JL, Chevassus-Au-Louis N, Ben-Ari Y. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 1998; 44(6): 845-57.

Ishihara K, Sasa M, Momiyama T, Ujihara H, Nakamura J, Serikawa T, Yamada J, Takaori S. Abnormal excitability of hippocampal CA3 pyramidal neurons of spontaneously epileptic rats (SER), a double mutant. Exp Neurol 1993; 119 (2): 287-90.

Jefferys, JGR. Advances in understanding basic mechanisms of epilepsy and seizures. Seizure 2010; 19: 638-646.

Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, et al. Animal models of epilepsy: use and limitations. Neuropsych Disease & Treat 2014; 10: 1693–1705.

Knopp A, Frahm C, Fidzinski P, Witte OW, Behr J. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. Brain 2008; 131(Pt 6): 1516-27. doi: 10.1093/brain/awn095.

Köhling R. Voltage-gated sodium channels in epilepsy. Epilepsia 2002; 43(11): 1278-95.

Long L, Xiao B, Feng L, Yi F, Li G, Li S, Mutasem MA, Chen S, Bi F, Li Y. Selective loss and axonal sprouting of GABAergic interneurons in the sclerotic hippocampus induced by LiCl-pilocarpine. Int J Neurosci 2011; 121(2): 69-85. doi: 10.3109/00207454.2010.530007

Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011; 20: 359-368.

Lothman EW Collins RC. Kainic acid induced limbic seizures: Metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 1981; 218; 299–318.

Luhmann N. Systems Theory. Malden, Trans. By Petern Gilgen. MA: Polity Press, 2013.

Lynch M, Sayin Ü, Golarai G, Sutula TP. NMDA-Receptor Dependent Plasticity of Granule Cell Firing in the Dentate Gyrus of Normal and Epileptic Rats. J Neurophysiol 2000; 84: 2868-2879.

Lynch M, Sayin Ü, Bownds J, Janumpalli S, Sutula TP. Long Term Consequences of Early Postnatal Seizures on Hippocampal Learning and Plasticity. European. J Neurosci 2000; 12: 2252-2264.

Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 2010; 9(4): 413-24. doi: 10.1016/S1474-4422(10)70059-4.

Meisler MH, Kearney JA, Sprunger LK, MacDonald BT, Buchner DA, Escayg A. Mutations of voltage-gated sodium channels in movement disorders and epilepsy. Novartis Found Symp 2002; 241:72-81; discussion 82-6, 226-32.

Naylor DE, Wasterlain CG. GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation. Epilepsia 2005; 46 Suppl 5: 142-7.

Psarropoulou C, Matsokis N, Angelatou F, Kostopoulos G. Pentylenetetrazol-induced seizures decrease gamma-aminobutyric acid-mediated recurrent inhibition and enhance adenosine-mediated depression. Epilepsia 1994; 35(1): 12-9.

Reddy DS, Kuruba R. Experimental Models of Status Epilepticus and Neuronal Injury for Evaluation of Therapeutic Interventions. Int J Mol Sci 2013; 14: 18284-18318.

Rutecki PA, Sayin Ü, Yang Y, and Hadar E. Determinants of Ictal Epileptiform Patterns in the Hippocampal Slice, Epilepsia 2002; 43 (Suppl. 5): 179-183.

Rutecki PA, Yang Y. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine. J Neurophysiol 1998; 79(6): 3019-29.

Saly V, Andrew RD. CA3 neuron excitation and epileptiform discharge are sensitive to osmolality. J Neurophysiol 1993; 69(6): 2200-8.

Sanjay M, Neymotin SA, Krothapalli SB. Impaired dendritic inhibition leads to epileptic activity in a computer model of CA3. Hippocampus 2015; 25(11):1336-50.

Sayin Ü, Osting S, Hagen J, Rutecki PA, Sutula T. Spontaneous Seizures and Loss of AxoAxonic and Axo-Somatic Inhibition Induced by Repeated Brief Seizures in Kindled Rats. J Neuroscience 2003; 23 (7): 2759-2768.

Sayin Ü and Rutecki PA. Effects of Pilocarpine on the Paired Pulse Inhibition in the CA3 Region of the Rat Hippocampus, Brain Res 1997; 758: 136-142.

Sayin Ü and Rutecki PA. Group I Metabotropic Glutamate Receptor Activation Produces Prolonged Epileptiform Neuronal Synchronization and Alters Evoked Population Responses in the Hippocampus, Epilepsy Res 2003; 53: 186-195.

Sayin Ü, Sutula TP, and Stafstrom C. Seizures in the Developing Brain Cause Adverse Long-Term Effects on Spatial Learning and Anxiety. Epilepsia 2004; 45 (12) 1539-1548.

Sayin Ü, Rutecki PA, Sutula TP. NMDA Dependent Currents in Granule Cells of the Dentate Gyrus Contribute to the Induction but not the Permanence of Kindling J Neurophysiol 1999; 81 (2): 564-574.

Sayin Ü, Timmerman W, Westerink BHC. The Significance of Extracellular GABA in the Substantia Nigra of the Rats During Seizures and Anticonvulsant Treatment. Brain Res 1995; 669: 67-72.

Sayin HÜ. A short introduction to system theory: Indispensible postulate systems and basic structures of the systems in quantum physics, biology and neuroscience (Review). NeuroQuantology 2016; 1:126-142.

Sloviter, R.S. Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 1987; 235: 73–76.

Sloviter RS, Zappone CA, Harvey BD, Frotscher M. Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: possible anatomical substrate of granule cell hyper-inhibition in chronically epileptic rats. J Comp Neurol 2006; 494(6): 944-60.

Song MY, Tian FF, Wang YZ, Huang X, Guo JL, Ding DX. Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. Mol Med Rep 2015; 11(3):1738-44.

Sperk, G.; Lassmann, H.; Baran, H.; Kish, S.J.; Seitelberger, F.; Hornykiewicz, O. Kainic acid induced seizures: Neurochemical and histopathological changes. Neuroscience 1983; 10: 1301–1315.

Sperk, G.; Lassmann, H.; Baran, H.; Seitelberger, F.; Hornykiewicz, O. Kainic acid-induced seizures: Dose-relationship of behavioural, neurochemical and histopathological changes. Brain Res 1985; 338: 289–295.

Stief F, Zuschratter W, Hartmann K, Schmitz D, Draguhn A. Enhanced synaptic excitation-inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy. Eur J Neurosci 2007; 25(2):519-28.

Stringer JL. Pentylenetetrazol causes polysynaptic responses to appear in the dentate gyrus. Neuroscience 1995; 68(2): 407-13.

Sun C, Mtchedlishvili Z, Bertram EH, Erisir A, Kapur J. Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol 2007; 500(5):876-93.

Sutula T, Zhang P, Lynch M, Sayin Ü, Golarai G and Rod R. Synaptic and axonal remodeling of mossy fibers in the hilus and supragranular region of the dentate gyrus in kainate treated rats. J Comp Neurol 1998; 390 (4): 578-594.

Sutula T, Harrison C, Steward O. Chronic epileptogenesis induced by kindling of the entorhinal cortex: The role of the dentate gyrus. Brain Res 1986; 385: 291–299.

Swartzwelder HS, Anderson WW, Wilson WA. Mechanism of electrographic seizure generation in the hippocampal slice in Mg2+-free medium: the role of GABAA inhibition. Epilepsy Res 1988; 2(4): 239-45.

Tian FF, Zeng C, Guo TH, Chen Y, Chen JM, Ma YF, Fang J, Cai XF, Li FR, Wang XH, Huang WJ, Fu JJ, Dang J. Mossy fiber sprouting, hippocampal damage and spontaneous recurrent seizures in pentylenetetrazole kindling rat model. Acta Neurol Belg 2009; 109(4): 298-304.

Tilelli, C.Q.; Del Vecchio, F.; Fernandes, A.; Garcia-Cairasco, N. Different types of status epilepticus lead to different levels of brain damage in rats. Epilepsy Behav 2005; 7: 401–410.

Tuff LP, Racine RJ, Adamec R. The effects of kindling on GABA-mediated inhibition in the dentate gyrus of the rat. I. Paired-pulse depression. Brain Res 1983; 277(1):79-90.

Turski, W.A.; Cavalheiro, E.A.; Bortolotto, Z.A.; Mello, L.M.; Schwarz, M.; Turski, L. Seizures produced by pilocarpine in mice: A behavioral, electroencephalographic and morphological analysis. Brain Res 1984; 321: 237–253.

Westmark CJ, Gourronc FA, Bartleson VA, Sayin Ü., Bhattacharya S, Sutula T and Malter JS, HuR mRNA Ligands Expressed After Seizure, J Neuropath & Exp Neurol 2005; 64 (12): 1037-1045.

Yan HD, Ishihara K, Seki T, Hanaya R, Kurisu K, Arita K, Serikawa T, Sasa M. Inhibitory effects of levetiracetam on the high-voltage-activated L-type Ca²⁺ channels in hippocampal CA3 neurons of spontaneously epileptic rat (SER). Brain Res Bull 2013; 90: 142-8. doi: 10.1016/j.brainresbull.2012.10.006.

Supporting Agencies

NIH, Veterans Administration, Epilepsy Foundation, İstanbul University

| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2019